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Abst rac t  In livestock populations, fitness may decrease 
due to inbreeding depression or as a negatively correlated 
response to artificial selection. On the other hand, fitness 
may increase due to natural selection. In the absence of a 
correlated response due to artificial selection, the critical 
population size at which the increase due to natural selec- 
tion and the decrease due to inbreeding depression balance 
each other is approximately D/2(y2a, where D=the inbreed- 
ing depression of fitness with complete inbreeding, and 
(y2wa=the additive genetic variance of fitness. This simple 
expression agrees well with results from transmission 
probability matrix methods. If fitness declines as a corre- 
lated negative response to artificial selection, then a large 
increase in the critical effective population size is needed. 
However, if the negative response is larger than the re- 
sponse to natural selection, a reduction in fitness cannot 
be prevented. From these results it is concluded that a neg- 
ative correlation between artificial and natural selection 
should be avoided. Effective sizes to prevent a decline in 
fitness are usually larger than those which maximize ge- 
netic gain of overall efficiency, i.e., the former is a more 
stringent restriction on effective size. In the examples pre- 
sented, effective sizes ranged from 31 to 250 animals per 
generation. 
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Introduction 

New developments in animal breeding schemes are de- 
signed to increase genetic gain, but inbreeding rates are of- 
ten increased concomitantly. For example, the introduction 
of BLUP as a means of estimating breeding values (Hen- 
derson 1984) and of MOET nucleus schemes (Nicholas and 
Smith 1983) will increase annual rates of inbreeding be- 
cause (1) the weightings attached to pedigree information 
are increased, (2) generation intervals are decreased, and 
(3) because of selection within small nucleus populations 
in the case of MOET schemes. The question arises, what 
rate of inbreeding is justifiable in a breeding scheme. Re- 
stricting rates of inbreeding may have a major impact on 
the optimization of breeding schemes. For instance, mass 
selection can be superior to BLUP selection when the con- 
straint on inbreeding is severe (Quinton et al. 1992). 

Detrimental effects of inbreeding are: (1) the reduction 
of additive genetic variance, which reduces rates of re- 
sponse and limits to selection for the trait under selection 
and other traits; (2) inbreeding depression for the trait 
under selection, if gene effects are non-additive; (3) in- 
breeding depression in fitness of the animal. However, in 
his simulation of dairy cattle breeding, Meuwissen (1989) 
found that reduction in additive genetic variance, over ten 
generations of selection, would only reduce total genetic 
gain by 13%. It was assumed, that the effective population 
size (Ne) was small (ten animals), the accuracy of selec- 
tion was high (about 0.8), and the proportion selected was 
small (0.1). These assumptions reduce cumulative genetic 
gain more than is likely in practice. In this rather extreme 
situation, doubling the N e increases the rate of gain by ap- 
proximately 6.5%. 

Because most production traits, such as growth rate and 
feed efficiency, do not show a high degree of inbreeding 
depression (Falconer 1981), inbreeding depression is not 
a major factor for production traits. In contrast, fitness, a 
combination of survival and reproductive traits, is often 
not selected for directly but is highly influenced by in- 
breeding depression (e.g., Beilharz 1982; Wiener et al. 



1020 

1992c). Hence, in the med ium term, the most stringent re- 
striction on the rate of inbreeding is imposed by inbreed- 
ing depression of fitness. 

Rates of deterioration of fitness traits through selection 
were derived by Robertson (1966). These rates may be 
ameliorated by incorporat ing them in selection indices, 
e.g., by desired gains indices (Cunn ingham et al. 1970). 
This strategy requires the measurement  of components  of 
fitness and knowledge of their relative importance for fit- 
ness and of their genetic parameters. On the other hand, N~ 
may be chosen such that depression of fitness due to in- 
breeding equals the additive genetic improvement  due to 
natural  selection, so that fitness should not change. Thus, 
Soul6 (1980) considers natural  selection as the remedy 
against the fixation of deleterious alleles, while Frankl in  
(1980) and Soul6 (1980) provide crude empirical  values of 
min imal  viable effective populat ion sizes. 

The aim of the present paper is to assess the critical ef- 
fective populat ion size for which decrease of fitness due 
to inbreeding depression and increase of fitness due to nat- 
ural selection balance one another. The perspective of an- 
imal breeders is rather short term so that the accumulat ion 
of new mutat ions is ignored. Accumula t ion  of mutat ions 
affects the long-term genetic variance and thus the re- 
sponse (Hill 1982) and the t ime till ext inct ion of popula-  
tions due to mutat ional  mel tdown (Lynch and Gabriel  
1990). A simple formula, which ignores the effects of se- 
lection on genetic variances (Bulmer 1971) is derived. 
More complicated models are compared to the simple for- 
mula.  

Materials and methods 

A population with discrete generations is assumed which is subject 
to artificial selection. Not all animals have maximum fitness, so that 
variation for fitness exists, which is partly due to additive and part- 
ly due to dominant gene effects. Epistatic gene interactions are as- 
sumed to be absent. Let N m be the total number of male parents with 
nmi, the number of offspring produced by the ith male parent. Fit- 
ness is defined as Wmi=nmi/nm, where nm---Y~nmi/Nm is the average 
number of offspring per male parent. Note that average fitness is 
~;Wmi/Nm = 1. Fitness of female parents is defined similarly. Thus, ar- 
tificial selection precedes natural selection within a generation and 
fitness is treated as a maternal/paternal trait. If production traits 
undergoing artificial selection are genetically uncorrelated to fitness 
then gene frequencies and genetic variances are expected to remain 
unchanged by artificial selection (except as influenced by effective 
population size which is affected by intensity of selection). 

A simple formula for critical effective population size 

The fundamental theorem of Fisher (1929) states that the expected 
increase in fitness through natural selection on viability is ~2wa per 

2 generation, where 6wa is the additive genetic variance of fitness. 
This conclusion may be drawn from the following argument. The 
phenotypic selection differential of male parents is the fitness of male 
parents minus the population mean of 1 weighted by their number of 
offspring: 

X s m = ~ ( W m i  - l ) w m i / N m = y ~ ( w m i  - l)2/Nm+~(Wmi- 1)/Nm=V(Wmi). 

The same holds for female parents, so that Xsf=V(wfi). 

If the mating of parents is at random with respect to fitness, then, 
from regression theory, the increase in breeding value for fitness is 
given by �89 g ( W a m ) / V ( w m ) q - X s f  g(Waf)/g(wf)]---(y2va, where 
V(wax)=the additive genetic variance of fitness in sex x, and 
(~2 a - - - - � 8 9  Thus, the expected increase in relative fit- 

9 . �9 hess through natural selection is c~v a per generation. This derivation 
invokes linear regression of genotypes on phenotypes, which prac- 
tically implies multi-normality, i.e., the infinitesimal model and nor- 
mal distributed environmental effects. However, because selection 
differentials due to natural selection are small, predictions from lin- 
ear regression will hold approximately even if distributions are non- 
normal and do not exhibit linear regression, e.g., in the case of ge- 
netic models with few loci. Jacquard (1972) shows that the theorem 
is approximately correct even for the one-locus model. 

In generation t, the increase of inbreeding depression is 
(Ft-Ft_I)D, where F t is the inbreeding coefficient at generation t and 
D is the depression of fitness in percentages of the mean per percent 
of inbreeding. If AF is the rate of inbreeding as defined by Falconer 
(1981), this increase per generation is AF(1-Ft_0D. With an addi- 
tive genetic model, increase in fitness due to natural selection in gen- 
eration t is (1-Ft_l) (y2a . Hence, two forces, natural selection increas- 
ing fitness and inbreeding depression reducing fitness, balance if 
~2. a =AF D, i.e., if effective population size is Ne=D/2C~va, because 
AF=I/2N e. But, if inbreeding depression occurs, the genetic model 
clearly includes dominance. 

The following argument suggests that, even with dominance, an 
effective population size of D/2(y~, a would prevent a decline of fit- 
ness in later generations. Increase of fitness due to natural selection, 
as derived above, is the sum of the covariances between sire and off- 
spring and that between dam and offspring. The covariance between 
parent and offspring is derived for a model that includes dominance 
and inbreeding in Appendix 1. Appendix 1 shows, that for traits with 
low heritabilities, high coefficients of variation, and high inbreed- 
ing depression, which is generally the case for fitness traits, the co- 
variance between parent and offspring exceeds ~ 2 ~(1-Ft)r~wa, where 
again AF is assumed to be small. Hence, increase in fitness would 
exceed G2wa(1-Ft) and D/2~y~a is a conservative estimate of the crit- 
ical effective population size. 

The two forces, inbreeding depression decreasing average fitness 
and natural selection improving additive genetic value, are assumed 
to be additive. In view of the complex nature of the stochastic pro- 
cess of changing gene frequencies, this approximation will be test- 
ed against results from transmission probability matrices describing 
the evolution of gene frequency distributions (Narain and Robertson 
1969). 

Let A1 and Az denote the positive and negative allele for fitness, 
respectively. In generation t, the frequency of A 2 is % Further the 
relative fitnesses of genotypes A1A ~, A1A 2 and A2A a are (l+a), 
(l+d), and (l-a), respectively. Gametes of selected animals are as- 
sumed to unite at random, hence, the frequencies of the genotypes 
are (1-qt) 2, 2qt(1-qt), and q2, respectively. The frequency of A2 af- 
ter selection is s*(qt)=[qt2(1 -a)+qt(1-qt)(1 +d)]/[qt2(l-a)+2qt(1-qt) " 
( I +d)+(1 -qt)2(1 +a)]. The denominator is the mean fitness. 

A monoecious population of size N is assumed which has a prob- 
ability of selling of l/N, and hence N=N~. Let Pit be the probability 
that the frequency of A2 is i/2N at generation t, for i=0,..,2N. The 
vector Pt contains the elements Pit. If qt=j/2N in generation t, 
qt+l=i/2N with probability Tij. From the binomial distribution: 

Tij=(ZN)[s*(j/2N)] i [1-s*(j/2N)] 2N-i. 

If T denotes the matrix with elements Tij, the evolution of the distri- 
bution of gene frequencies is given by the recurrence relationship: 
pt+l=Tpt (Narain and Robertson 1969) from which the evolution of 
the distribution of gene frequencies can be obtained given an initial 
distribution; here: %=0.2 will be used. 

Correlation between fitness and production 
and variance reductions 

If a correlation exists between fitness and production, then here this 
correlation will be assumed to be negative. This assumption is made 



because (1) only negative correlations cause a problem if decline in 
fitness is to be prevented, and (2) negative correlations are more like- 
ly as the resources of an animal are limited and merit in one trait may 
be (partly) offset by demerit in another; hence, the assumption that 
selection for production will most likely lead to a correlated decrease 
in fitness. Because selection for production precedes selection for 
fitness, reduction in ~52~ due to selection will need to be accounted 
for. The 1-F t terms in the expressions for reduction in variance and 
inbreeding depression cancel as shown in the previous section. The 
non-additive genetic terms will be ignored which will lead to con- 
servative estimates of response to natural selection (see Appen- 
dix 1). 

In the following, genotypes for fitness and production will be as- 
sumed to involve many alleles such that the genotypic distributions 
are approximately normal�9 Let C(i,j) t be the (co)variance between 
trait i andj in generation t, where i (j) is P , Pa, Wm or W~, which are 
the phenotypes and additive genotypes of Pproduction and of fitness, 
respectively (if i=j, the variance of i is denoted). Further, * denotes 
after selection for production. For simplicity, sires and dams are as- 
sumed to be identically selected. Extension to differential sire and 
dam selection is straightforward. From regression theory (Pearson 
1903): 

C(i,j)t*=C(i,j)t-C(i,Pp) t C(j,Pp)t kp/C(Pp,Pp)t, 

where kp is the reduction in variance of C(Pp,Pp) t. For truncation se- 
lection kp=ip(ip-Xp), where ip and xp are the standardised selection 
differential and truncation point, respectively. The correlated re- 
sponse of fitness is: 

AWpt=ip  C ( P p , W a ) t / C ( P p , P p ) t .  

Let N denote the average fitness after selection for production: 

~vV---- 1-bAWpt. 

The selection differential of fitness due to natural selection is ob- 
tained by weighting the fitness of the selected animals minus the 
mean of the selected animals by their number of offspring: 

~Wi(Wi--~N)/(W N)=]](wi-@)2/('~ N ) + ~ ( w i - ' ~ ) / N = C ( W p , W p ) t * / @ .  

The regression coefficient of W a on Wp is C(W a Wp) t /C(Wp W_)t - 
�9 , ~ , 1 o. 

The genetic response due to natural selection equals the selection 
differential times the regression coefficient: 

~ W w t = C ( W a , W p ) t  */-w. 

Let C0d)t** denote (co)variances of parents weighted by their 
number of offspring, because these (co)variances determine the 
(co)variances due to parents observed among the offspring. Again 
applying regression theory: 

C ( i , j ) t * * = C ( i , j ) t * - C ( i , W p ) t * C (  j , w p ) t * k w t / c ( w p , w p ) t * .  
�9 �9 * 2 As shown m Appendix 2 kwt=C(Wp W_)t/W . . . . ' , p 

With adenncal male and female selection, the additive genetic 
(co)variances in the next generation are (Bulmer 1971), 
C ' '  1 C . .  * * + 1  . .  (1,J)t+l = ~  " ( l ,J) t  7C(1 , J )0 ,  

Table 1 The minimum effective population sizes to maintain fitness 
at its current level as derived from transmission probability matric- 
es (Ne) compared with D/2h2CV 2, where D= 1 is the depression with 
complete inbreeding for different values of the positive homozygote 
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where i (j) denote the additive genotypes of production or fitness. 
The second term represents variance due to Mendelian sampling. The 
phenotypic variances and covariances are obtained by: 

C(r,s)t +l=C(i,j)t+l+cE(r,s), 

where r(s) denotes the phenotype corresponding to genotype i(j), and 
Ca(r,s) is the environmental (co)variance of traits r and s. 

This model will be used to investigate effects of variance reduc- 
tion due to selection and correlated responses from artificial selec- 
tion on the effective population size required to prevent fitness de- 
terioration. Inbreeding depression and correlated response from ar- 
tificial selection will decrease genetic values for fitness. Natural se- 
lection wil increase fitness. The critical effective population at which 
these effects balance will be compared to that predicted by D/202wa . 

Results 

Comparing D/2~52a to results from transmission 
probabil i ty matrix methods 

Table 1 compares the populat ion numbers  for which the 
mean fitness is mainta ined at the initial  level after ten gen- 
erations of natural  selection, using the t ransmission prob- 
abili ty method. These results are compared to the predic- 
tion D/2(32a = D/2h2CV 2. The ranges of coefficients of vari- 
ation and heritabilit ies of fitness in Table 1 agree with the 
coefficients of variation and heritabili t ies of egg produc- 
tion in poultry and litter size in pigs and sheep (Smith 
1984). With a coefficient of variation of 0.4, a fitness of 
w=0 is 2.5 standard deviations below the mean. Hence, a 
small proport ion of the populat ion would fail to produce 
offspring. 

The values of gene effects a and d follow from the as- 
2 (which is given in Table 1 as h2CV2), sumptions D=I ,  Owa 

the initial  gene frequency %=0.2,  and the number  of loci, 
L. The value of d is obtained as 

d=D/2Lq0(1-qo),  (1) 

and that of a as 

Owa2=2Lq0(l-q0) [a+d(2qo- 1 ) ] 2, (2) 

which yields a quadratic in a with only one posit ive solu- 
tion. 

(a) and the heterozygote genotype (d) at one locus. All loci are as- 
sumed to have equal a and d-values and initial gene frequencies of 
%=0.2 

CV h 2 No. of loci 

20 40 80 160 

a (x100) N e a (xl00) N e a (xl00) N~ a (• N e D/2h2CV 2 

0.2 0.05 11.1 255 5.9 245 
0.10 11.9 120 6.5 115 

0.4 0.05 12.9 55 7.2 55 
0.10 14.4 25 8.2 25 

d (xl00) 15.6 7.8 

3.2 245 1.8 255 250 
3.6 120 2.1 125 125 

4.1 60 2.4 60 63 
4.8 30 2.9 30 31 

3.9 2.0 
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Table 2 Critical effective population sizes (Ne) to maintain average 
fitness, when depression due to complete inbreeding D=I, pheno- 
typic and genetic correlations between fitness and production are r, 
heritability and coefficient of variation of fitness are h2w and CV, re- 
spectively, and the standardised selection differential and heritabil- 
ity of production, which is improved by mass selection, are i v and 
0.25, respectively. The results are proportional to D and are com- 
pared to D/2O2wa 

r CV hw 2 N' D/20wa 2 

ip= 1 ip=2 

0.0 0.2 0.05 250 250 250 
0.10 126 126 125 

0.4 0.05 63 63 63 
0.10 32 32 31 

-0.1 0.2 0.05 X ~ X 250 
0.10 440 X 125 

0.4 0.05 130 >10000 63 
0.10 50 108 31 

-0.2 0.2 0.05 X X 250 
0.10 X X 125 

0.4 0.05 X X 63 
0.10 127 X 31 

a X=the negative correlated response of artificial selection exceeds 
the natural selection response so that a decline in fitness cannot be 
prevented 

The approximation D/2~2a generally overestimates 
slightly the critical N e (Table 1), as expected from Appen- 
dix 1. Overestimation is largest with small numbers of loci 

2 and with large 6wa- Appendix 1 shows that in such situa- 
tions contributions of non-additive terms to covariance be- 
tween parent and offspring is largest. Increased covariance 
between parent and offspring implies more response from 
natural selection and, hence, a smaller critical population 
size. 

If  inbreeding depression is large and additive genetic 
variance is small, the effects of genes need to be overdom- 
inant to satisfy these conditions, i.e., d>a (see Table 1). 
This situation occurs particularly when the number of loci 
determining fitness is moderate or small. With overdomi- 
nant gene action, selection tends to intermediate gene fre- 
quencies which are difficult to maintain, because drift leads 
to extreme gene frequencies, so that a large critical N e is 
needed if gene effects are markedly overdominant. 

N e (Table 2). This indicates that reduction in variance due 
to natural selection is negligible, as expected for traits with 
low heritability. Natural selection cannot compensate for 
a negative correlated response of artificial selection, un- 
less artificial selection is weak and the negative correla- 
tion is close to zero (Table 2). The critical N~ is markedly 
increased by a negative correlated response. If  the corre- 
lated response exceeds the natural selection response, a de- 
cline of fitness (irrespective of the effective population 
size) cannot be prevented. 

Discussion 

The genetic model 

Critical effective population sizes were obtained by bal- 
ancing the effects of natural selection and inbreeding de- 
pression for a finite number of loci using a genetic model 
that encompassed non-additive genetic variation in the 
form of dominance but not epistasis. Depression was as- 
sumed to be proportional to the coefficient of inbreeding, 
which is a property of  dominance but not generally of epis- 
tasis. Where this has been tested, dominance was the ma- 
jor cause of heterosis in between-line crosses but contri- 
butions of epistasis were significant for some traits (e.g., 
Abplanalph et al. 1984; Fairfull et al. 1987; Wiener et al. 
1992a, b, c). The dominant effect of  genes d is proportional 
to 1/L and the additive effect a is approximately propor- 
tional to 1/ '~--[see formulas (1) and (2)], hence, l imL+~ 
d/a=0, i.e., gene effects are additive. Consequently, the 
number of loci was assumed to be finite. 

When considering the genetic background of fitness, the 
effects of very rare recessive deleterious (or even lethal) 
genes are most striking. But such genes do not cause much 
additive variation of fitness. Therefore, and because the 
problems caused by these genes may be more efficiently 
tackled by genetic markers, the genetic model used here 
was not directed in particular towards such genes. Genes 
with smaller detrimental effects on fitness are more likely 
to increase in frequency and collectively lead to a substan- 
tial reduction in fitness. Also non-linearity of the heritabil- 
ity of  fitness (Frankham et al. 1988; Frankham 1990) was 
not considered here. An average heritability weighted by 
the genetic contributions of the selection candidates was 
used. 

Correlated response and reduction in variance 
due to selection 

Table 2 provides the critical N e after accounting for vari- 
ance reduction due to selection and correlations between 
fitness and production. The results are for D=I ,  but results 
for different values of D can be obtained by multiplying 
the N~ of Table 2 by D. 

If  the correlations between fitness and production are 
zero, Ne=D/2~32wa is a good approximation for the critical 

Prevention of deterioration of fitness 

In the introduction, the effects of inbreeding on fitness were 
argued to be a more stringent restriction on population sizes 
of livestock than inbreeding effects on production traits. 
Goddard and Smith (1990) maximized the genetic gain of 
economic efficiency by optimizing the number of bull sires 
selected. Reduction in genetic variance and depression of 
efficiency due to inbreeding were both considered. God- 
dard and Smith concluded that the optimum number of bull 
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sires selected was ten bulls per generation, to be used 
equally (Poisson distribution of the number of offspring 
per bull). If Wright's (1931) formula, which ignores selec- 
tion, is used and if the number of dams is infinite, an ef- 
fective population size of 40 is obtained. This number is 
an overestimate, because the effect of selection on effec- 
tive population size is large (Wray and Thompson 1990) 
and because the number of dams is finite. Further, it ex- 
ceeds only the smallest effective sizes found in Table 2, 
i.e., those for CV=0.4 and h2w=0.1. Thus, preventing a de- 
cline in fitness would require more stringent restriction of 
effective population size than optimization of overall effi- 
ciency. 

Goddard (1992) found an optimum number of bulls se- 
lected for the world-wide black and white cattle popula- 
tion of six per year, which is 30 per generation and an ef- 
fective population size of 120 animals per generation us- 
ing Wrights' (1931) formula. Because Wrights' formula 
overestimates effective population sizes substantially, this 
N e remains smaller than the sizes presented in Table 1, ex- 
cept those in situations with high coefficients of variation. 

Although some may doubt whether a change in fitness 
should be restricted to zero if selection is for overall effi- 
ciency there are reasons which make maintenance of fit- 
ness desirable. Clearly, the ability to survive and reproduce 
are vital, but some reduction may be compensated for by 
increased production. As fitness decreases its economic 
value will increase, which, ideally, will lead to a zero 
change at some critical value of fitness. Nevertheless, alo- 
owing fitness to decline involves several risks: valuable 
genes may be lost; critical values of components of fitness 
may be overshot due to the time lags in the selection pro- 
cess; and unfit animals may lead to public concern about 
the production system and, eventually, to the decreased use 
of products. The trend towards larger farm sizes calls for 
more 'trouble free' animals. Prevention of a decline now, 
rather than be forced to address reduced fitness at some 
point in the future, seems reasonable. 

The assumption has been made that a population has a 
desirable level of fitness at present and that any deteriora- 
tion would be undesirable. This assumption may not hold 
immediately for populations that have been developed with 
large effective population sizes. In the short term, such pop- 
ulations may be maintained at lower N e than Ne=D/2~52.a. 
If fitness is considered too low, then larger effective pop- 
ulation sizes would give an increase in fitness of approxi- 
mately (1-Ft)((52wa-D/2Ne). 

The values of D and c~ 2 
w a  

Assuming D=I, as in Tables 1 and 2, means that fitness 
will decrease to zero as inbreeding approaches 1. Values 
of D for major components of fitness are available from 
the literature and are usually between 0.5 and 1% of in- 
breeding depression per percent of inbreeding (e.g., Fal- 
coner 1981, p. 228; Woodard et al. 1982; MacNeil et al. 
1989; Wiener et al. 1992c). Because of non-linearity and 
because inbreeding rates are low, inbreeding depression 

will be expressed per percent of inbreeding, which is de- 
noted by 8. Because overall fitness is the product of its 
components, for instance overall fitness may be survival 
rate times litter size, the depression of overall fitness is 
larger than that of its components: 

5=l-Hallj(1-~j), which is for a small 85 equal to 2allj 8j, 

where 6 and 8j are the depression of overall fitness and the 
jth component of fitness per percent of inbreeding, respec- 
tively. If some components of fitness are neglected in this 
formula, D will be underestimated. Latter and Robertson 
(1962) and Beilharz (1982) also show that depression of 
overall fitness is substantially larger than that of the indi- 
vidual components. 

The additive genetic effect of overall fitness is the prod- 
uct of the additive genetic effects of its component traits. 
Using a Taylor series approximation, the additive genetic 
variance is approximated by: 

(Ywa2=~j CVj2hj2+~j~ij rijahihjCVjCVi, 

where CVj (hi 2) is the coefficient of variation (heritability) 
of the jth component of fitness and rij a is the additive ge- 
netic correlation between the ith and jth component. Ne- 
glecting components of fitness results in underestimation 
of both Cy2wa and D. Hence, the effect of neglecting compo- 
nents of fitness on the estimate of the critical N e will de- 
pend on the specific situation. 

The relationship between artificial and natural selection 

It was assumed that high production could not compensate 
for low fitness and vice versa. In practical breeding 
schemes, natural selection response may be reduced by (1) 
greater management efforts to overcome low fitness of ex- 
treme producing animals, and (2) some standardization of 
family size if test places are limited. Whilst both these ac- 
tions may tend to increase the critical effective population 
size required to maintain fitness, the effect of standardiza- 
tion of family size is more ambiguous because standard- 
ization also reduces the variance of family size and thus 
increases the effective population size. 

Table 2 shows that natural selection can hardly com- 
pensate for a correlated response from artificial selection, 
which decreases fitness. Hence, a negative correlation be- 
tween fitness and selection indices should be prevented to 
avoid decreasing fitness, which can be achieved by using 
desired gains indices (Cunningham et al. 1970). Probably, 
only the major components of fitness need to be included 
in the desired gains index. If some components, which have 
a negative correlation with the selection index are over- 
looked, they would become evident as selection proceeds 
and could then be included in the index. Natural selection 
will prevent deterioration of fitness components, which are 
uncorrelated to the selection index, if N e is sufficiently 
large. 

An implication of these considerations is the use of re- 
stricted indices. However Gibson and Kennedy (1990) sug- 
gest that restricted indices provide less genetic gain than 
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unrest r ic ted indices.  Their  conclus ion  assumes that a de-  
crease  in f i tness may  be compensa ted  by  an increase  of  
product ion  and that all inf luences  on prof i tab i l i ty  are 
c lear ly  ident i f ied  and accura te ly  costed.  Moreover ,  a large 
decrease  in fi tness wil l  lead to losses due to infert i le  or in- 
v iable  animals  which  cannot  be compensa ted  by produc-  
tion, i.e., the prof i t  funct ion is non-l inear .  Godda rd  (1983) 
showed that non- l inear  prof i t  funct ions are op t imized  by  
searching for the max ima l  prof i t  that can be reached within 
the t ime hor izon of  the breeding  plan, and then select ing 
with l inear  indices  towards  this opt imum. He also showed 
that i f  a long- te rm perspec t ive  is taken and the popula t ion  
is at the op t imum for, e.g.,  f i tness,  which may  be approx-  
imate ly  the case at the onset  of  select ion,  the op t imal  se- 
lect ion s t ra tegy is to mainta in  fi tness at its opt imum. 

In conclus ion,  a s imple  fo rmula  was der ived  for the cri t-  
ical  effect ive popula t ion  size at which  natural  select ion for 
fi tness and inbreeding  depress ion  balance.  The results  
agree with results  f rom t ransmiss ion  probabi l i ty  matr ices  
for genet ic  models  with dominance  and ove rdominance  
(Table 1). The effect ive size to accompl i sh  this goal  is gen- 
eral ly  larger  than that obta ined  f rom max imiz ing  the ge- 
netic gain of  economic  eff iciency.  Further,  negat ive  corre- 
la ted response  for f i tness f rom art i f ic ial  select ion increased  
the required cri t ical  effect ive sizes substant ial ly,  and in 
some c i rcumstances  this dele ter ious  response  could  not be 
offset  by increas ing popula t ion  size. Hence,  an effect ive  
popula t ion  size of  D/2cY2wa is r e c o m m e n d e d  and the corre-  
lat ion be tween  fi tness and the se lect ion indices  for p roduc-  
tion should be p reven ted  f rom be ing  negat ive.  

The cri t ical  effect ive  popula t ion  sizes presented  apply  
also to natural  popula t ions ,  where  the cr i t ical  effect ive  pop-  
ulat ion size is the m i n i m u m  popula t ion  size such that nat- 
ural select ion can make  progress  agains t  inbreeding  de- 
pression.  Popula t ions  which  are smal ler  than the cri t ical  
size will  p re sumab ly  go to ext inc t ion  as they enter  a down-  
ward spiral  of  ever -decreas ing  fi tness.  The results  also ap- 
p ly  to conservat ion  b io logy  by  p rov id ing  the m i n i m u m  
sizes required for conserva t ion  o f  popula t ions .  
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that the rate of inbreeding is small, such that the inbreeding of the 
parent F t is approximately equal to that of the offspring and to the 
coefficient of kinship q0 t. 

In the base generation the genotypic effects can be decomposed 
into average effects and dominance deviations (Falconer 1981). 
(This decomposition of genotypic values is different from the val- 
ues a and d used previously in the text but is more relevant to this 
particular problem.) From these V a and V D, the additive and the dom- 
inance variance respectively, can be defined; further define V~ as the 
variance of dominance deviations for homozygotes; C~D as the co- 
variance of the total average effect and dominance deviations of ho- 
mozygotes; and D' the mean dominance deviation of homozygotes. 

From the work of Gillois (1964) and Harris (1964) a general form 
for the covariance of two individuals i and j with genotypes G i and 
Gj, descended from the same base generation, is given by: 

Coy (Gt,Gj)=2qo (i,j) "VA+2Q3 (i,j) C~D+Q4 (i,j) 
V~+H(i,j)VD+I(i,j)D '2, 

where q0 (i,j)=coefficient of kinship of i and j; Qn(i,j)=probability 
that a random sample of n of the four genes from i and j are identi- 
cal; H(i,j)=probability that neither i norj are inbred but that i and j 
have two pairs of identical genes; I(i,j)=joint probability of i and j 
both being inbred minus the product of F(i) and F(j) [where F(i)=in- 
breeding coefficient of i]. 

If i is a parent of j, two of the four genes are obliged to be iden- 
tical since a copy of one gene from i is passed to j. For simplicity 
these two genes will be termed 'directly identical'. Then, 
q~(id)= 1/4(1 +3Ft) since the probability of sampling the directly iden- 
tical genes is �88 and for all three of the remaining samplings the prob- 
ability of identity by descent is approximately Ft, where Ft=average 
inbreeding coefficient in generation t. Q3(i,J)=�89 because 
with probability -~, in a sample of three genes both directly identical 
genes are sampled and a third is identical with a probability Ft, and 
because in the remaining samplings none of the three genes are di- 
rectly identical and the probability of identity is approximately Ft 2. 
Q4(i,j)=Ft 2 is straightforward. H(i,j)=Ft(1-Ft) because the directly 
identical pair must be distinct from the other pair, which must be 
identical. Finally, I(i,j)=0 since the joint probability of being inbred 
equals approximately the product of the inbreeding coefficients Ft 2. 

Therefore, the total covariance between parent and offspring is 
given by 

1 2 �9 p Covt(Gi,Gj) = ~ (1 +3Ft)VA+Ft( 1-Ft)VD+Ft VD+Ft(I+Ft)C~D. 

This is the covariance between G i and Gj with respect to the non-in- 
bred base population and includes the covariance between any two 
individuals belonging to the same line. However, in livestock breed- 
ing the population under consideration is a single line. Therefore, 
the covariance of two randomly drawn individuals from the same 
line must be subtracted, i.e., Covt(Gi,Gk) where i and k have no spec- 
ified relationship. In this case qo(i,k)=F t, Q3(i,k)=Ft 2, Q4(i,k)=Ft 3, 
H(i,k)=2Ft2(1-Ft), and I(i,k)=0, and so 

C O v t ( G  i , G k ) = 2 F t V A + 2 F t 2 ( 1 - F t ) V D + F t 3 V ~ 3 + 2 F t 2 C ~ D  . 

Appendix 1 

The genetic covariance between parent and offspring with 
dominance and inbreeding 

Loci will be assumed independent; hence, variances and covarianc- 
es at individual loci sum to the variances and covariances of geno- 
types. This implies that linkage disequilibria due to selection and 
small population size are neglected. Weir and Cockerham (1974) 
showed that linkage disequilibria may be large, but did not come to 
a general expression for the covariance between inbred individuals 
when accounting for this. The close agreement between effective 
population sizes with and without accounting for linkage disequilib- 
ria due to selection (Table 2) suggests that the effects of linkage dis- 
equilibria due to natural selection may be small. Further it is assumed 

Table A1 The dominance variance without (VD) and with complete 
inbreeding (V~), and the covariance between additive and dominant 
effects with complete inbreeding CAD. The depression with complete 
inbreeding is 1 

No. loci V D V[)  Coefficient of variation 

0.20 0.40 

h2=0.05 h2=0.10 h2=0.05 h2=0.10 

Additive genetic variance VA: 0.002 0.004 0.008 0.016 

CAD: 

40 0.025 0.056 0.015 0.021 0.030 0.043 
160 0.006 0.014 0.008 0.011 0.015 0.021 
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Therefore, the covariance of parent i with offspring j within lines is 
given by 

1 2 , , 
C O V w t ( G i , G j ) = ( 1 - F t ) [ ~ V a + F t (  1 2Ft)vD+F t V D+Ft CAD]"  
(A1) 

All coefficients of non-additive terms contain F t, hence, their con- 
tributions are small if inbreeding levels are low. 

Values of V D, V~ and CAD for traits with small heritability and 
high coefficients of variation and inbreeding depression, as is the 
case for fitness traits, are shown in Table AI.  Because VD<V ~ in Ta- 
ble A1, the sum of the second and third term of Eq. (A1) is positive 
for all F t. Further, C~D>0, such that Covwt(Gi,Gj)>l(1-Ft)VA, so 
that I(1-Ft)VA may be used as a conservative underestimate of the 
covariance between parent and offspring. 

Appendix 2 

Reduction in variance due to natural selection 

Artificial selection usually selects certain animals as parents and re- 
jects others. Reduction in variance is then obtained by calculating 
variances of the selected parents. With natural selection, virtually all 
parents have offspring, but the numbers of offspring differ. There- 
fore, reduction in variance due to natural selection is obtained by 
weighting the parental values of the trait by the number of offspring. 
The relative number of offspring of selected parent i is w i, which has 
mean ,~ and variance V w. It is assumed here that selection for pro- 
duction preceded natural selection, but the derivation also holds if 
there was no selection for production. Let X denote a trait after se- 
lection for production and Xi** .be the deviation of trait X from its 
mean, i.e., E(Xi*)=0. Now, X i is decomposed as: 

X i =b(wi-@)+R i, 

w h e r e  b--Cov(wi,Xi*)/V w. It is assumed that R i does not depend on 
w i, which will approximately hold for distributions close to normal. 
Hence, at least approximately, E(Ri)=0 and Var(Ri)= (l-r2)Vx, where 
r is the correlation between w i and Xi* and Vx=Var(Xi* ). The vari- 
ance of Xi, when weighted by the number of offspring, i.e., account- 
ing for natural selection, is: 

Var(Xi**)=2wiXi*2/(@ N) - [~wiXi* ] (@ N)] 2 
=~wi(wi-'~)2b~/('~ N)+Var(Ri)-[2wi(wi-N)b/('~ N)] 2 
=~(wi-,~)3b2/(~ N) +2(wi-@)'2b2/N+Var(Ri) 
-[Z(wi-W)2b/(W N)+(Y~(wi-W)b/N)] 2. 

The first term will be approximately zero if the distribution of w i is 
approximately symmetric, i.e., the third central moment is approxi- 
mately zero. In the last term 2(wi-~)=0,  because the sum of devia- 
tions from the mean is zero. Hence approximately, 

Var(Xi* * )=b2Vw+Var(Ri)-b2Vw2/,Tr 2 
=r2Vx+(1-r2)Vx-Cov2(wi,Xi*)/gv 2 
- -Vx-Cov2(wi ,X i* )k /gw,  

where k=Vw/,Tv 2. Note that X i can be w i and the result will still hold 
with variances replacing covariances. 
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